იტვირთება

რამდენი ამონახსნი აქვს წრფივი განტოლებების სისტემას, თუ ვიცით, რომ მინიმუმ 2 არის?

ვიდეოს აღწერა

უნდა ამოხსნათ ორი წრფივი განტოლების სისტემა ორი ცვლადით. იპოვეთ ერთზე მეტი ამონახსნი, რომელიც აკმაყოფილებს ამ სისტემას. რომელი წინადადებაა ჭეშმარიტი? წინადადებების წაკითხვამდე, დავფიქრდეთ რა ხდება. დავხატოთ, საკოორდინატო წრფეები. ეს არის ვერტიკალური წრფე, ეს იქნება ერთ-ერთი ცვლადი. ეს კი ჰორიზონტალური წრფე, მეორე ცვლადი. წესის გამო, ამას დავარქვათ x, ამას კი y, თუმცა ისინი წარმოადგენენ იმას, რა ცვლადებიც გვაქვს. ეს არის ორი წრფივი განტოლების სისტემა. გრაფიკულად, ნებისმიერი წრფივი განტოლება ორი ცვლადით, შეგვიძლია გამოვსახოთ წრფით. არსებობს მხოლოდ სამი სცენარი. პირველის შემთხვევაში წრფეები საერთოდ არ გადაიკვეთება. ასეთი შემთხვევა გვექნება, როცა მათ ერთნაირი დახრილობა აქვთ და სხვადასხვა ადგილას კვეთენ y-ს. თუმცა ეს სცენარი არ გვაწყობს. გვეუბნებიან, რომ ერთზე მეტი ამონახსნი აკმაყოფილებს სისტემას. აქ კი საერთოდ არ გვაქვს ამონახსნი. ანუ ეს შემთხვევა არ გვაწყობს. მეორე სცენარის მიხედვით, ისინი ერთ წერტილში თანაიკვეთება. ანუ ერთი xy კოორდინატი არსებობს, რომელიც აკმაყოფილებს ორივე პირობას, თუმცა არც ეს სცენარი გვაწყობს, რადგან ერთზე მეტი ამონახსნი გვჭირდება. ანუ ეს სცენარიც არ არის. ერთადერთი სცენარი, რომელიც შეიძლება გვქონდეს არის წრფეები, რომლებიც ერთზე მეტ ადგილას იკვეთება. როცა ორივე წრფივ განტოლებას ერთნაირი გრაფიკი აქვს. ორივე ერთნაირ, xy დამოკიდებულებას ასახავს. ეს ერთადერთი შემთხვევაა, როცა შეიძლება მქონდეს ორი წრფე- მხოლოდ წრფივ დამოკიდებულებებსა და წრფეებს ეხება ეს. ერთადერთი შემთხვევა, როცა ორი წრფე ერთზე მეტ ადგილას იკვეთება, არის, როცა ისინი ყველგან იკვეთება. ვიცით, რომ ასეთ შემთხვევებში უსასრულო რაოდენობის ამონახსნები გვაქვს. რომელი ვარიანტი ასახავს სწორ პასუხს? აი, ეს: "სისტემას უსასრულოდ ბევრი ამონახსნი აქვს".