If you're seeing this message, it means we're having trouble loading external resources on our website.

თუ ვებფილტრს იყენებთ, დარწმუნდით, რომ *.kastatic.org და *.kasandbox.org დომენები არ არის დაბლოკილი.

ძირითადი მასალა

ალგებრა (ყველა მასალა)

კურსი: ალგებრა (ყველა მასალა) > თემა 10

გაკვეთილი 17: კვადრატული განტოლების მამრავლებად დაშლა: კვადრატების სხვაობა

კვადრატული განტოლების მამრავლებად დაშლა: კვადრატების სხვაობა

ისწავლეთ, როგორ დავშალოთ კვადრატული გამოსახულებები, რომელთაც "კვადრატების სხვაობის" ფორმა აქვთ. მაგალითად, x²-16 ჩაწერეთ (x+4)(x-4) სახით.
მრავალწევრის მამრავლებად დაშლა გულისხმობს მის ჩაწერას ორი ან მეტი მრავალწევრის ნამრავლის სახით. ის მრავალწევრების გადამრავლების შებრუნებული პროცესია.
ამ სტატიაში ვისწავლით, როგორ გამოვიყენოთ კვადრატების სხვაობის ფორმულა კონკრეტული მრავალწევრების დასაშლელად. თუ არ იცით კვადრატების სხვაობის ფორმულა, სტატიის დაწყებამდე იხილეთ ჩვენი ვიდეო.

შესავალი: კვადრატების სხვაობის ფორმულა

ყველა მრავალწევრი, რომელიც წარმოადგენს კვადრატების სხვაობას, შეიძლება, დაიშალოს შემდეგი ფორმულის გამოყენებით:
start color #11accd, a, end color #11accd, squared, minus, start color #1fab54, b, end color #1fab54, squared, equals, left parenthesis, start color #11accd, a, end color #11accd, plus, start color #1fab54, b, end color #1fab54, right parenthesis, left parenthesis, start color #11accd, a, end color #11accd, minus, start color #1fab54, b, end color #1fab54, right parenthesis
მიაქციეთ ყურადღება, რომ ამ ფორმულაში a და b შეიძლება, იყოს ნებისმიერი ალგებრული გამოსახულება. მაგალითად, a, equals, x და b, equals, 2 მნიშვნელობებისთვის ვიღებთ შემდეგს:
x222=(x+2)(x2)\begin{aligned}\blueD{x}^2-\greenD{2}^2=(\blueD x+\greenD 2)(\blueD x-\greenD 2)\end{aligned}
x, squared, minus, 4 მრავალწევრი უკვე ჩაწერილია მამრავლების სახით: left parenthesis, x, plus, 2, right parenthesis, left parenthesis, x, minus, 2, right parenthesis. დაშლის სისწორის დასამტკიცებლად შეგვიძლია, გავშალოთ განტოლების მარჯვენა მხარე:
(x+2)(x2)=x(x2)+2(x2)=x22x+2x4=x24\begin{aligned}(x+2)(x-2)&=x(x-2)+2(x-2)\\\\&=x^2-2x+2x-4\\ \\ &=x^2-4\end{aligned}
ახლა, როცა უკვე გავიგეთ ფორმულის შინაარსი, გამოვიყენოთ ის კიდევ რამდენიმე მრავალწევრის დასაშლელად.

მაგალითი 1: x, squared, minus, 16-ის მამრავლებად დაშლა

x, squared და 16 ორივე სრული კვადრატია, რადგან x, squared, equals, left parenthesis, start color #11accd, x, end color #11accd, right parenthesis, squared და 16, equals, left parenthesis, start color #1fab54, 4, end color #1fab54, right parenthesis, squared. სხვა სიტყვებით:
x, squared, minus, 16, equals, left parenthesis, start color #11accd, x, end color #11accd, right parenthesis, squared, minus, left parenthesis, start color #1fab54, 4, end color #1fab54, right parenthesis, squared
ვინაიდან ორი კვადრატი აკლდება ერთმანეთს, ვხედავთ, რომ ეს მრავალწევრი წარმოადგენს კვადრატების სხვაობას. მის დასაშლელად შეგვიძლია, გამოვიყენოთ კვადრატების სხვაობის ფორმულა
start color #11accd, a, end color #11accd, squared, minus, start color #1fab54, b, end color #1fab54, squared, equals, left parenthesis, start color #11accd, a, end color #11accd, plus, start color #1fab54, b, end color #1fab54, right parenthesis, left parenthesis, start color #11accd, a, end color #11accd, minus, start color #1fab54, b, end color #1fab54, right parenthesis
ჩვენს შემთხვევაში start color #11accd, a, end color #11accd, equals, start color #11accd, x, end color #11accd და start color #1fab54, b, end color #1fab54, equals, start color #1fab54, 4, end color #1fab54. მაშასადამე, ჩვენი მრავალწევრი მამრავლდებად შემდეგნაირად დაიშლება:
left parenthesis, start color #11accd, x, end color #11accd, right parenthesis, squared, minus, left parenthesis, start color #1fab54, 4, end color #1fab54, right parenthesis, squared, equals, left parenthesis, start color #11accd, x, end color #11accd, plus, start color #1fab54, 4, end color #1fab54, right parenthesis, left parenthesis, start color #11accd, x, end color #11accd, minus, start color #1fab54, 4, end color #1fab54, right parenthesis
შეგვიძლია, შევამოწმოთ ჩვენი ნამუშევარი: დავრწმუნდეთ, რომ ამ ორი მამრავლის ნამრავლი არის x, squared, minus, 16.

შეამოწმეთ, როგორ გესმით

1) დაშალეთ მამრავლებად x, squared, minus, 25.
აირჩიეთ 1 პასუხი:

2) დაშალეთ მამრავლებად x, squared, minus, 100.

დასაფიქრებელი შეკითხვა

3) შეგვიძლია თუ არა კვადრატების სხვაობის ფორმულის გამოყენება x, squared, plus, 25 გამოსახულების მამრავლებად დასაშლელად?
აირჩიეთ 1 პასუხი:

მაგალითი 2: 4, x, squared, minus, 9-ის მამრავლებად დაშლა

კვადრატების სხვაობის ფორმულის გამოსაყენებლად არ არის აუცილებელი, რომ საწყისი კოეფიციენტი იყოს 1. სინამდვილეში, აქ შეგვიძლია, კვადრატების სხვაობის ფორმულა გამოვიყენოთ!
ეს ასეა იმიტომ, რომ 4, x, squared და 9 სრული კვადრატებია, ვინაიდან 4, x, squared, equals, left parenthesis, start color #11accd, 2, x, end color #11accd, right parenthesis, squared და 9, equals, left parenthesis, start color #1fab54, 3, end color #1fab54, right parenthesis, squared. შეგვიძლია, გამოვიყენოთ ეს ინფორმაცია მრავალწევრის დასაშლელად კვადრატების სხვაობის ფორმულის გამოყენებით:
4x29=(2x)2(3)2=(2x+3)(2x3)\begin{aligned}4x^2-9 &=(\blueD {2x})^2-(\greenD{3})^2\\ \\ &=(\blueD {2x}+\greenD 3)(\blueD {2x}-\greenD 3) \end{aligned}
სწრაფი შემოწმება გამრავლებით ადასტურებს ჩვენი პასუხის სისწორეს.

შეამოწმეთ, როგორ გესმით

4) დაშალეთ მამრავლებად 25, x, squared, minus, 4.
აირჩიეთ 1 პასუხი:

5) დაშალეთ მამრავლებად 64, x, squared, minus, 81.

6) დაშალეთ მამრავლებად 36, x, squared, minus, 1.

რთული ამოცანები

7*) დაშალეთ მამრავლებად x, start superscript, 4, end superscript, minus, 9.

8*) დაშალეთ მამრავლებად 4, x, squared, minus, 49, y, squared.

გსურთ, შეუერთდეთ დისკუსიას?

პოსტები ჯერ არ არის.
გესმით ინგლისური? დააწკაპუნეთ აქ და გაეცანით განხილვას ხანის აკადემიის ინგლისურენოვან გვერდზე.